Detailinfo Magnitude inspIRe Quint 27. Oktober 2025

inspIRe™

Nanosekunden MIR TA-Spektrometer

Wir präsentieren das erste breitbandige Nanosekunden
TA- Spektrometer im mittleren Infrarotbereich – das kompakte  inspIRe™ erreicht dank seiner patentierten Rauschunterdrückungstechnologie eine bahnbrechende Nachweisgrenze von 100 ΔnanoO.D. und ermöglicht die vollständige Erfassung transienter Absorptionsdaten über Zeit und Wellenlänge – eine echte Revolution in der mid-IR-TA-Spektroskopie.

Entwickelt und hergestellt von:
Features
  • Integrierte Abtastlichtquelle
  • Integrierter Anregungslaser
  • Großes, modulares Probenfach
  • Integriertes Detektionssystem
  • Integrierter Hochleistungsrechner
  • Analyse- und Automatisierungssoftware
Besonderheiten
  • Kompaktes Tischgerät
  • Vielseitig kompatibel: geeignet für Proben in Küvetten, Durchflusszellen, Dünnfilmen, Pulvern und Kryostaten
  • Einzigartige Nachweisgrenze von 100 ΔnanoOD
  • Unterstützt Transmissions- und Reflexionsgeometrien der Probenausleuchtung
  • Vollständige Zeitachse wird mit einem einzelnen Laserschuss erfasst
  • Zeitauflösung von ≥5 ns und Verzögerungszeiten bis in den ms-Bereich
  • Stationäre Absorptionsspektroskopie
    (z. B. Erfassung von Vibrationsspektren analog zur FTIR-Spektroskopie)
  • Zeitaufgelöste Emissionsspektroskopie
Anwendungen
  • Ladungsfallen und Rekombinationsprozesse 
  • Dynamik biologischer Systeme und Materialien
  • Untersuchung chemischer Reaktionsmechanismen

Persönliche Beratung oder Produktanfrage

KUNDEN ÜBER DIE FEMTOLUX SERIE
Was mögen die Anwender am FemtoLux
Anwendungen
Ultrabreitbandige MIR TA-Spektroskopie in Photovoltaik

Jüngste Fortschritte in der Rauschunterdrückungstechnologie von Magnitude Instruments haben die Nanosekunden-Mid-IR-Transiente-Absorptionsspektroskopie (TA) grundlegend verändert. Sie ermöglichen den Einsatz niedrigintensiver, ultrabreitbandiger mid-IR-Sondenquellen…

Anwendungen
Wissenschafliche Veröffentlichungen

Yilei Wu, Yue Yuan, Diego Sorbelli, Christina Cheng, Lukas Michalek, Hao-Wen Cheng, Vishal Jindal, Song Zhang, Garret LeCroy, Enrique D. Gomez, Scott T. Miller, Alberto Salleo, Giulia Galli, John B. Asbury, Michael F. Toney, and Zhenana Bao. Nat. Commun. 2024, 15, 2170.

All-polymer solar cells (all-PSCs) offer improved morphological and mechanical stability compared with those containing small-molecule-acceptors (SMAs). They can be processed with a broader range of conditions, making them desirable for printing techniques. In this study, we report a high-performance polymer acceptor design based on bithiazole linker (PY-BTz) that are on par with SMAs. We demonstrate that bithiazole induces a more coplanar and ordered conformation compared to bithiophene due to the synergistic effect of non-covalent backbone planarization and reduced steric encumbrances. As a result, PY-BTz shows a significantly higher efficiency of 16.4% in comparison to the polymer acceptors based on commonly used thiophene-based linkers (i.e., PY-2T, 9.8%). Detailed analyses reveal that this improvement is associated with enhanced conjugation along the backbone and closer interchain π-stacking, resulting in higher charge mobilities, suppressed charge recombination, and reduced energetic disorder. Remarkably, an efficiency of 14.7% is realized for all-PSCs that are solution-sheared in ambient conditions, which is among the highest for devices prepared under conditions relevant to scalable printing techniques. This work uncovers a strategy for promoting backbone conjugation and planarization in emerging polymer acceptors that can lead to superior all-PSCs.

Kyle T.Munson, Eric R.Kennehan, Grayson S.Doucette, John B.Asbury
Chem 2018, 4, 2826-2843

The remarkable efficiency of halide perovskite photovoltaic devices can be traced to their curiously long charge-carrier lifetimes and high mobilities, but the underlying origins of these properties and their ability to tolerate defects from solution processing remain unclear. Elucidating these origins is particularly important for efforts to develop new perovskite materials that are more stable and that avoid toxic components such as lead.
We reveal that localization of charge carriers into electronic states known as large polarons slows their recombination through a combination of reduced wavefunction overlap and the formation of energetic barriers to electron-hole recombination. Importantly, this localization is mediated by thermally induced dynamic disorder of the anharmonic perovskite lattice. These findings reveal pathways to vary the composition of halide perovskites to tune the interplay between charge transport and recombination to optimize their optoelectronic properties.